Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
medRxiv ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38562868

RESUMO

Humans experience many influenza infections over their lives, resulting in complex and varied immunological histories. Although experimental and quantitative analyses have improved our understanding of the immunological processes defining an individual's antibody repertoire, how these within-host processes are linked to population-level influenza epidemiology remains unclear. Here, we used a multi-level mathematical model to jointly infer antibody dynamics and individual-level lifetime influenza A/H3N2 infection histories for 1,130 individuals in Guangzhou, China, using 67,683 haemagglutination inhibition (HI) assay measurements against 20 A/H3N2 strains from repeat serum samples collected between 2009 and 2015. These estimated infection histories allowed us to reconstruct historical seasonal influenza patterns and to investigate how influenza incidence varies over time, space and age in this population. We estimated median annual influenza infection rates to be approximately 18% from 1968 to 2015, but with substantial variation between years. 88% of individuals were estimated to have been infected at least once during the study period (2009-2015), and 20% were estimated to have three or more infections in that time. We inferred decreasing infection rates with increasing age, and found that annual attack rates were highly correlated across all locations, regardless of their distance, suggesting that age has a stronger impact than fine-scale spatial effects in determining an individual's antibody profile. Finally, we reconstructed each individual's expected antibody profile over their lifetime and inferred an age-stratified relationship between probability of infection and HI titre. Our analyses show how multi-strain serological panels provide rich information on long term, epidemiological trends, within-host processes and immunity when analyzed using appropriate inference methods, and adds to our understanding of the life course epidemiology of influenza A/H3N2.

2.
PLoS Comput Biol ; 20(2): e1011871, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38330139

RESUMO

Massive sequencing of SARS-CoV-2 genomes has urged novel methods that employ existing phylogenies to add new samples efficiently instead of de novo inference. 'TIPars' was developed for such challenge integrating parsimony analysis with pre-computed ancestral sequences. It took about 21 seconds to insert 100 SARS-CoV-2 genomes into a 100k-taxa reference tree using 1.4 gigabytes. Benchmarking on four datasets, TIPars achieved the highest accuracy for phylogenies of moderately similar sequences. For highly similar and divergent scenarios, fully parsimony-based and likelihood-based phylogenetic placement methods performed the best respectively while TIPars was the second best. TIPars accomplished efficient and accurate expansion of phylogenies of both similar and divergent sequences, which would have broad biological applications beyond SARS-CoV-2. TIPars is accessible from https://tipars.hku.hk/ and source codes are available at https://github.com/id-bioinfo/TIPars.


Assuntos
Genoma , Software , Filogenia , Funções Verossimilhança , SARS-CoV-2/genética
3.
Int J Mol Sci ; 24(18)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37762492

RESUMO

Butyrate, produced by gut microbe during dietary fiber fermentation, has anti-inflammatory and antioxidant effects on chronic inflammation diseases, yet it remains to be explored whether butyrate has protective effects against viral infections. Here, we demonstrated that butyrate alleviated tissue injury in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected golden hamsters supplemented with butyrate before and during the infection. Butyrate-treated hamsters showed augmentation of type I interferon (IFN) response and activation of endothelial cells without exaggerated inflammation. In addition, butyrate regulated redox homeostasis by enhancing the activity of superoxide dismutase (SOD) to inhibit excessive apoptotic cell death. Therefore, butyrate exhibited effective prevention against SARS-CoV-2 by upregulating antiviral immune responses and promoting cell survival.

4.
Nat Commun ; 14(1): 4117, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37433761

RESUMO

The emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants and "anatomical escape" characteristics threaten the effectiveness of current coronavirus disease 2019 (COVID-19) vaccines. There is an urgent need to understand the immunological mechanism of broad-spectrum respiratory tract protection to guide broader vaccines development. Here we investigate immune responses induced by an NS1-deleted influenza virus vectored intranasal COVID-19 vaccine (dNS1-RBD) which provides broad-spectrum protection against SARS-CoV-2 variants in hamsters. Intranasal delivery of dNS1-RBD induces innate immunity, trained immunity and tissue-resident memory T cells covering the upper and lower respiratory tract. It restrains the inflammatory response by suppressing early phase viral load post SARS-CoV-2 challenge and attenuating pro-inflammatory cytokine (Il6, Il1b, and Ifng) levels, thereby reducing excess immune-induced tissue injury compared with the control group. By inducing local cellular immunity and trained immunity, intranasal delivery of NS1-deleted influenza virus vectored vaccine represents a broad-spectrum COVID-19 vaccine strategy to reduce disease burden.


Assuntos
COVID-19 , Vacinas contra Influenza , Influenza Humana , Animais , Cricetinae , Humanos , Vacinas contra COVID-19 , SARS-CoV-2 , COVID-19/prevenção & controle
5.
J Virol ; 97(6): e0043423, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37289052

RESUMO

Although influenza A viruses of several subtypes have occasionally infected humans, to date only those of the H1, H2, and H3 subtypes have led to pandemics and become established in humans. The detection of two human infections by avian H3N8 viruses in April and May of 2022 raised pandemic concerns. Recent studies have shown the H3N8 viruses were introduced into humans from poultry, although their genesis, prevalence, and transmissibility in mammals have not been fully elucidated. Findings generated from our systematic influenza surveillance showed that this H3N8 influenza virus was first detected in chickens in July 2021 and then disseminated and became established in chickens over wider regions of China. Phylogenetic analyses revealed that the H3 HA and N8 NA were derived from avian viruses prevalent in domestic ducks in the Guangxi-Guangdong region, while all internal genes were from enzootic poultry H9N2 viruses. The novel H3N8 viruses form independent lineages in the glycoprotein gene trees, but their internal genes are mixed with those of H9N2 viruses, indicating continuous gene exchange among these viruses. Experimental infection of ferrets with three chicken H3N8 viruses showed transmission through direct contact and inefficient transmission by airborne exposure. Examination of contemporary human sera detected only very limited antibody cross-reaction to these viruses. The continuing evolution of these viruses in poultry could pose an ongoing pandemic threat. IMPORTANCE A novel H3N8 virus with demonstrated zoonotic potential has emerged and disseminated in chickens in China. It was generated by reassortment between avian H3 and N8 virus(es) and long-term enzootic H9N2 viruses present in southern China. This H3N8 virus has maintained independent H3 and N8 gene lineages but continues to exchange internal genes with other H9N2 viruses to form novel variants. Our experimental studies showed that these H3N8 viruses were transmissible in ferrets, and serological data suggest that the human population lacks effective immunological protection against it. With its wide geographical distribution and continuing evolution in chickens, other spillovers to humans can be expected and might lead to more efficient transmission in humans.


Assuntos
Vírus da Influenza A Subtipo H3N8 , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Influenza Humana , Animais , Humanos , Influenza Humana/epidemiologia , Galinhas , Saúde Pública , Vírus da Influenza A Subtipo H9N2/genética , Filogenia , Furões , China/epidemiologia , Aves Domésticas
6.
Clin Neuroradiol ; 33(3): 813-824, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37185668

RESUMO

PURPOSE: The aim of this study was to investigate the temporal evolution of perihematomal blood-brain barrier (BBB) compromise and edema growth and to determine the role of BBB compromise in edema growth. METHODS: Spontaneous intracerebral hemorrhage patients who underwent computed tomography perfusion (CTP) were divided into five groups according to the time interval from symptom onset to CTP examination. Permeability-surface area product (PS) maps were generated using CTP source images. Ipsilateral and contralateral mean PS values were computed in the perihematomal and contralateral mirror regions. The relative PS (rPS) value was calculated as a ratio of ipsilateral to contralateral PS value. Hematoma and perihematomal edema volume were determined on non-contrast CT images. RESULTS: In the total of 101 intracerebral hemorrhage patients, the ipsilateral mean PS value was significantly higher than that in contralateral region (z = -8.284, p < 0.001). The perihematomal BBB permeability showed a course of dynamic changes including an increase in the hyperacute and acute phases, a decrease in the early subacute phase and a second increase in the late subacute phase and chronic phase. Perihematomal edema increased gradually until the late subacute phase and then slightly increased. There was a relationship between rPS value and edema volume (ß = 0.254, p = 0.006). CONCLUSION: The perihematomal BBB permeability is dynamic changes, and edema growth is gradually increased in patients following intracerebral hemorrhage. BBB compromise plays an essential role in edema growth. The quantitative assessment of BBB compromise may provide valuable information in therapeutic interventions of intracerebral hemorrhage patients.


Assuntos
Barreira Hematoencefálica , Edema Encefálico , Humanos , Barreira Hematoencefálica/diagnóstico por imagem , Edema Encefálico/diagnóstico por imagem , Edema Encefálico/etiologia , Hemorragia Cerebral/complicações , Hemorragia Cerebral/diagnóstico por imagem , Edema , Hematoma/diagnóstico por imagem
7.
Adv Sci (Weinh) ; 10(17): e2207249, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37096860

RESUMO

Highly pathogenic coronavirus (CoV) infection induces a defective innate antiviral immune response coupled with the dysregulated release of proinflammatory cytokines and finally results in acute respiratory distress syndrome (ARDS). A timely and appropriate triggering of innate antiviral response is crucial to inhibit viral replication and prevent ARDS. However, current medical countermeasures can rarely meet this urgent demand. Here, an antiviral nanobiologic named CoVR-MV is developed, which is polymerized of CoVs receptors based on a biomimetic membrane vesicle system. The designed CoVR-MV interferes with the viral infection by absorbing the viruses with maximized viral spike target interface, and mediates the clearance of the virus through its inherent interaction with macrophages. Furthermore, CoVR-MV coupled with the virus promotes a swift production and signaling of endogenous type I interferon via deregulating 7-dehydrocholesterol reductase (DHCR7) inhibition of interferon regulatory factor 3 (IRF3) activation in macrophages. These sequential processes re-modulate the innate immune responses to the virus, trigger spontaneous innate antiviral defenses, and rescue infected Syrian hamsters from ARDS caused by SARS-CoV-2 and all tested variants.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Humanos , SARS-CoV-2 , Imunidade Inata , Antivirais/farmacologia , Antivirais/uso terapêutico
8.
Medicine (Baltimore) ; 102(5): e32836, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36749270

RESUMO

INTRODUCTION: Abdominal infection combined with pneumoperitoneum after renal transplantation is rare, clinically confusing, and easily misdiagnosed by physicians as gastrointestinal perforation. PATIENT CONCERNS: A 54-year-old man experienced abdominal pain and distension together with signs of peritoneal irritation after cadaveric renal transplantation. CT and standing abdominal plain film showed a large pneumoperitoneum in the abdominal cavity and the patient underwent an exploratory laparotomy but no gastrointestinal perforation was found. DIAGNOSIS: No gastrointestinal perforation was found during the operation. In the search for the infectious agent, ascites culture was negative while next-generation sequencing was positive, suggesting the presence of intestinal flora ectopic to abdominal infection with anaerobic respiration fermentation leading to large amounts of gas. INTERVENTIONS: The patient underwent exploratory laparotomy without gastrointestinal perforation, and then underwent abdominal lavage, placed abdominal drainage tube, and conducted culture and next-generation sequencing examination of ascites. OUTCOMES: Postoperative symptoms were relieved and intestinal function recovered. After 3 months of outpatient follow-up, the patient had stable transplanted kidney function and was in good spirits and sleeping well, with a good appetite, soft and regular stools, no abdominal pain and distension, and no fever. CONCLUSION: Patients after kidney transplantation should be wary of abdominal infection being misdiagnosed as gastrointestinal perforation.


Assuntos
Traumatismos Abdominais , Perfuração Intestinal , Infecções Intra-Abdominais , Transplante de Rim , Pneumoperitônio , Masculino , Humanos , Pessoa de Meia-Idade , Transplante de Rim/efeitos adversos , Pneumoperitônio/etiologia , Ascite/complicações , Infecções Intra-Abdominais/complicações , Traumatismos Abdominais/complicações , Peritônio , Dor Abdominal , Perfuração Intestinal/etiologia
9.
Virus Evol ; 9(1): veac125, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36694817

RESUMO

Virus emergence may occur through interspecies transmission and recombination of viruses coinfecting a host, with potential to pair novel and adaptive gene combinations. Camels are known to harbor diverse ribonucleic acid viruses with zoonotic and epizootic potential. Among them, astroviruses are of particular interest due to their cross-species transmission potential and endemicity in diverse host species, including humans. We conducted a molecular epidemiological survey of astroviruses in dromedaries from Saudi Arabia and Bactrian camels from Inner Mongolia, China. Herein, we deployed a hybrid sequencing approach coupling deep sequencing with rapid amplification of complementary deoxyribonucleic acid ends to characterize two novel Bactrian and eight dromedary camel astroviruses, including both partial and complete genomes. Our reported sequences expand the known diversity of dromedary camel astroviruses, highlighting potential recombination events among the astroviruses of camelids and other host species. In Bactrian camels, we detected partially conserved gene regions bearing resemblance to human astrovirus types 1, 4, and 8 although we were unable to recover complete reading frames from these samples. Continued surveillance of astroviruses in camelids, particularly Bactrian species and associated livestock, is highly recommended to identify patterns of cross-species transmission and to determine any epizootic threats and zoonotic risks posed to humans. Phylogenomic approaches are needed to investigate complex patterns of recombination among the astroviruses and to infer their evolutionary history across diverse host species.

10.
J Virol ; 97(2): e0168422, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36651747

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant is becoming a dominant circulator and has several mutations in the spike glycoprotein, which may cause shifts of immunogenicity, so as to result in immune escape and breakthrough infection among the already infected or vaccinated populations. It is unclear whether infection with Omicron could generate adequate cross-variant protection. To investigate this possibility, we used Syrian hamsters as an animal model for infection of SARS-CoV-2. The serum from Omicron BA.1 variant-infected hamsters showed a significantly lower neutralization effect against infection of the same or different SARS-CoV-2 variants than the serum from Beta variant-infected hamsters. Furthermore, the serum from Omicron BA.1 variant-infected hamsters were insufficient to protect against rechallenge of SARS-CoV-2 Prototype, Beta and Delta variants and itself. Importantly, we found that rechallenge with different SARS-CoV-2 lineages elevated cross-variant serum neutralization titers. Overall, our findings indicate a weakened immunogenicity feature of Omicron BA.1 variant that can be overcome by rechallenge of a different SARS-CoV-2 lineages. Our results may lead to a new guideline in generation and use of the vaccinations to combat the pandemic of SARS-CoV-2 Omicron variant and possible new variants. IMPORTANCE The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant causes breakthrough infections among convalescent patients and vaccinated populations. However, Omicron does not generate robust cross-protective responses. Here, we investigate whether heterologous SARS-CoV-2 challenge is able to enhance antibody response in a sensitive animal model, namely, Syrian hamster. Of note, a heterologous challenge of Beta and Omicron BA.1 variant significantly broadens the breadth of SARS-CoV-2 neutralizing responses against the prototype, Beta, Delta, and Omicron BA.1 variants. Our findings confirm that vaccination strategy with heterologous antigens might be a good option to protect against the evolving SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Anticorpos Neutralizantes , Anticorpos Antivirais , Antígenos Heterófilos/imunologia , Infecções Irruptivas , COVID-19/prevenção & controle , Mesocricetus , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Imunogenicidade da Vacina
11.
Elife ; 112022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36458815

RESUMO

Background: Over a life course, human adaptive immunity to antigenically mutable pathogens exhibits competitive and facilitative interactions. We hypothesize that such interactions may lead to cyclic dynamics in immune responses over a lifetime. Methods: To investigate the cyclic behavior, we analyzed hemagglutination inhibition titers against 21 historical influenza A(H3N2) strains spanning 47 years from a cohort in Guangzhou, China, and applied Fourier spectrum analysis. To investigate possible biological mechanisms, we simulated individual antibody profiles encompassing known feedbacks and interactions due to generally recognized immunological mechanisms. Results: We demonstrated a long-term periodicity (about 24 years) in individual antibody responses. The reported cycles were robust to analytic and sampling approaches. Simulations suggested that individual-level cross-reaction between antigenically similar strains likely explains the reported cycle. We showed that the reported cycles are predictable at both individual and birth cohort level and that cohorts show a diversity of phases of these cycles. Phase of cycle was associated with the risk of seroconversion to circulating strains, after accounting for age and pre-existing titers of the circulating strains. Conclusions: Our findings reveal the existence of long-term periodicities in individual antibody responses to A(H3N2). We hypothesize that these cycles are driven by preexisting antibody responses blunting responses to antigenically similar pathogens (by preventing infection and/or robust antibody responses upon infection), leading to reductions in antigen-specific responses over time until individual's increasing risk leads to an infection with an antigenically distant enough virus to generate a robust immune response. These findings could help disentangle cohort effects from individual-level exposure histories, improve our understanding of observed heterogeneous antibody responses to immunizations, and inform targeted vaccine strategy. Funding: This study was supported by grants from the NIH R56AG048075 (DATC, JL), NIH R01AI114703 (DATC, BY), the Wellcome Trust 200861/Z/16/Z (SR), and 200187/Z/15/Z (SR). This work was also supported by research grants from Guangdong Government HZQB-KCZYZ-2021014 and 2019B121205009 (YG and HZ). DATC, JMR and SR acknowledge support from the National Institutes of Health Fogarty Institute (R01TW0008246). JMR acknowledges support from the Medical Research Council (MR/S004793/1) and the Engineering and Physical Sciences Research Council (EP/N014499/1). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.


Assuntos
Vacinas contra Influenza , Influenza Humana , Humanos , Vírus da Influenza A Subtipo H3N2 , Formação de Anticorpos , Acontecimentos que Mudam a Vida , Anticorpos Antivirais
12.
iScience ; 25(12): 105475, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36338435

RESUMO

Recently, a new variant lineage of SARS-CoV-2, namely Omicron, became the dominant global circulating strain. The multiple antigenic mutations of Omicron largely decrease the efficiency of current vaccines and neutralizing antibodies, which highlights the need for more potent and reachable medical countermeasures. Here, we hypothesize that direct viral clearance by nasal irrigation might be a convenient and alternative option, and perform proof-of-concept experiments in the Syrian hamster model. Interestingly, Omicron shows a different dynamic in the changes of viral RNA, viral titers, and proinflammatory cytokines in nasal rinsing samples when compared with the prototype. Meanwhile, the levels of viral load and proinflammatory cytokines in nasal rinsing samples can indicate the severity of lung injury. Of note, daily nasal irrigation efficiently attenuates inflammation and lung injury in Omicron-infected hamsters by decreasing the viral loads in the respiratory tract organs. Moreover, daily nasal irrigation effectively suppresses viral transmission by close contact.

13.
Cell Host Microbe ; 30(12): 1732-1744.e7, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36323313

RESUMO

SARS-CoV-2 spread in humans results in continuous emergence of new variants, highlighting the need for vaccines with broad-spectrum antigenic coverage. Using inter-lineage chimera and mutation-patch strategies, we engineered a recombinant monomeric spike variant (STFK1628x) that contains key regions and residues across multiple SAR-CoV-2 variants. STFK1628x demonstrated high immunogenicity and mutually complementary antigenicity to its prototypic form (STFK). In hamsters, a bivalent vaccine composed of STFK and STFK1628x elicited high titers of broad-spectrum neutralizing antibodies to 19 circulating SARS-CoV-2 variants, including Omicron sublineages BA.1, BA.1.1, BA.2, BA.2.12.1, BA.2.75, and BA.4/5. Furthermore, this vaccine conferred robust protection against intranasal challenges by either SARS-CoV-2 ancestral strain or immune-evasive Beta and Omicron BA.1. Strikingly, vaccination with the bivalent vaccine in hamsters effectively blocked within-cage virus transmission of ancestral SARS-CoV-2, Beta variant, and Omicron BA.1 to unvaccinated sentinels. Thus, our study provided insight and antigen candidates for the development of next-generation COVID-19 vaccines.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Cricetinae , Humanos , Vacinas contra COVID-19/genética , Glicoproteína da Espícula de Coronavírus/genética , SARS-CoV-2/genética , COVID-19/prevenção & controle , Mutação , Anticorpos Amplamente Neutralizantes , Vacinas Combinadas , Anticorpos Antivirais , Anticorpos Neutralizantes
14.
Cell Mol Immunol ; 19(12): 1392-1399, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36258005

RESUMO

The new predominant circulating SARS-CoV-2 variant, Omicron, can robustly escape current vaccines and neutralizing antibodies. Although Omicron has been reported to have milder replication and disease manifestations than some earlier variants, its pathogenicity in different age groups has not been well elucidated. Here, we report that the SARS-CoV-2 Omicron BA.1 sublineage causes elevated infection and lung pathogenesis in juvenile and aged hamsters, with more body weight loss, respiratory tract viral burden, and lung injury in these hamsters than in adult hamsters. Juvenile hamsters show a reduced interferon response against Omicron BA.1 infection, whereas aged hamsters show excessive proinflammatory cytokine expression, delayed viral clearance, and aggravated lung injury. Early inhaled IFN-α2b treatment suppresses Omicron BA.1 infection and lung pathogenesis in juvenile and adult hamsters. Overall, the data suggest that the diverse patterns of the innate immune response affect the disease outcomes of Omicron BA.1 infection in different age groups.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Interferon-alfa , Lesão Pulmonar , Animais , Cricetinae , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais , Antivirais , COVID-19/patologia , Interferon-alfa/uso terapêutico , Lesão Pulmonar/virologia , Mesocricetus , SARS-CoV-2
15.
Transbound Emerg Dis ; 69(5): e3101-e3110, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35881331

RESUMO

The last influenza pandemic in 2009 emerged from swine and surveillance of swine influenza is important for pandemic preparedness. Movement of swine during husbandry, trade or marketing for slaughter provide opportunities for transfer and genetic reassortment of swine influenza viruses. Over 90% of the swine slaughtered at the central swine abattoir in Hong Kong are imported from farms located in multiple provinces in mainland China. There is opportunity for virus cross-infection during this transport and slaughter process. Of the 26,980 swabs collected in the slaughterhouse in Hong Kong from 5 January 2012 to 15 December 2016, we analysed sequence data on influenza A (H3N2) virus isolates (n = 174) in conjunction with date of sampling and originating farm. Molecular epidemiology provided evidence of virus cross-infection between swine originating from different farms during transport. The findings are also suggestive of a virus lineage persisting in a swine farm for over 2 years, although the lack of information on management practices at farm-level means that alternative explanations cannot be excluded. We used virus serology and isolation data from 4226 pairs of linked serum and swabs collected from the same pig at slaughter from swine originating from Guangdong Province to compare the force of infection (FOI) during transport and within farms. The mean weekly FOI during transport was λt  = 0.0286 (95% CI = 0.0211-0.0391) while the weekly FOI in farms was λf = 0.0089 (95% CI = 0.0084-0.0095), assuming a possible exposure duration in farm of 28 weeks, suggesting increased FOI during the transport process. Pigs sourced from farms with high seroprevalence were found to be a significant risk factor (adjusted OR = 2.24, p value = .015) for infection of imported pigs during transport by multivariable logistic regression analysis, whereas pigs with HAI titre of ≥1:40 were associated with a substantial reduction in infection risk by 67% (p value = 0.012). Transport may increase virus cross-infection rates and provide opportunities for virus reassortment potentially increasing zoonotic risk to those involved in the transportation and slaughtering processes.


Assuntos
Vírus da Influenza A , Infecções por Orthomyxoviridae , Doenças dos Suínos , Animais , Fazendas , Vírus da Influenza A Subtipo H3N2/genética , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Estudos Soroepidemiológicos , Suínos
16.
J Clin Transl Hepatol ; 10(2): 284-296, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35528990

RESUMO

Background and Aims: Hepatocellular carcinoma (HCC) is listed as one of the most common causes of cancer-related death. Oncolytic therapy has become a promising treatment because of novel immunotherapies and gene editing technology, but biosafety concerns remain the biggest limitation for clinical application. We studied the the antitumor activity and biosafety of the wild-type Newcastle disease virus HK84 strain (NDV/HK84) and 10 other NDV strains. Methods: Cell proliferation and apoptosis were determined by cell counting Kit-8 and fluorescein isothiocyanate Annexin V apoptosis assays. Colony formation, wound healing, and a xenograft mouse model were used to evaluate in vivo and in vitro oncolytic effectiveness. The safety of NDV/HK84 was tested in nude mice by an in vivo luciferase imaging system. The replication kinetics of NDV/HK84 in normal tissues and tumors were evaluated by infectious-dose assays in eggs. RNA sequencing analysis was performed to explore NDV/HK84 activity and was validated by quantitative real-time PCR. Results: The cell counting Kit-8 assays of viability found that the oncolytic activity of the NDV strains differed with the multiplicity of infection (MOI). At an MOI of 20, the oncolytic activity of all NDV strains except the DK/JX/21358/08 strain was >80%. The oncolytic activities of the NDV/HK84 and DK/JX/8224/04 strains were >80% at both MOI=20 and MOI=2. Only NDV/HK84 had >80% oncolytic activities at both MOI=20 and MOI=2. We chose NDV/HK84 as the candidate virus to test the oncolytic effect of NDV in HCC in the in vitro and in vivo experiments. NDV/HK84 killed human SK-HEP-1 HCC cells without affecting healthy cells. Conclusions: Intratumor infection with NDV/HK84 strains compared with vehicle controls or positive controls indicated that NDV/HK84 strain specifically inhibited HCC without affecting healthy mice. High-throughput RNA sequencing showed that the oncolytic activity of NDV/HK84 was dependent on the activation of type I interferon signaling.

17.
Sci Bull (Beijing) ; 67(13): 1372-1387, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35637645

RESUMO

Remarkable progress has been made in developing intramuscular vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); however, they are limited with respect to eliciting local immunity in the respiratory tract, which is the primary infection site for SARS-CoV-2. To overcome the limitations of intramuscular vaccines, we constructed a nasal vaccine candidate based on an influenza vector by inserting a gene encoding the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2, named CA4-dNS1-nCoV-RBD (dNS1-RBD). A preclinical study showed that in hamsters challenged 1 d after single-dose vaccination or 9 months after booster vaccination, dNS1-RBD largely mitigated lung pathology, with no loss of body weight. Moreover, such cellular immunity is relatively unimpaired for the most concerning SARS-CoV-2 variants, especially for the latest Omicron variant. In addition, this vaccine also provides cross-protection against H1N1 and H5N1 influenza viruses. The protective immune mechanism of dNS1-RBD could be attributed to the innate immune response in the nasal epithelium, local RBD-specific T cell response in the lung, and RBD-specific IgA and IgG response. Thus, this study demonstrates that the intranasally delivered dNS1-RBD vaccine candidate may offer an important addition to the fight against the ongoing coronavirus disease 2019 pandemic and influenza infection, compensating limitations of current intramuscular vaccines.

18.
Cell Rep ; 38(12): 110558, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35303476

RESUMO

Mutations in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike receptor-binding domain (RBD) may alter viral host tropism and affect the activities of neutralizing antibodies. Here, we investigated 153 RBD mutants and 11 globally circulating variants of concern (VOCs) and variants of interest (VOIs) (including Omicron) for their antigenic changes and cross-species tropism in cells expressing 18 ACE2 orthologs. Several RBD mutations strengthened viral infectivity in cells expressing ACE2 orthologs of non-human animals, particularly those less susceptible to the ancestral strain. The mutations surrounding amino acids (aas) 439-448 and aa 484 are more likely to cause neutralization resistance. Strikingly, enhanced cross-species infection potential in the mouse and ferret, instead of the neutralization-escape scores of the mutations, account for the positive correlation with the cumulative prevalence of mutations in humans. These findings present insights for potential drivers of circulating SARS-CoV-2 variants and provide informative parameters for tracking and forecasting spreading mutations.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Furões , Humanos , Glicoproteínas de Membrana/metabolismo , Camundongos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus , Tropismo , Proteínas do Envelope Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...